Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Virol ; 97(10): e0134823, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37830819

RESUMO

IMPORTANCE: Due to their limited genetic capacity, viruses are reliant on multiple host systems to replicate successfully. Mammalian orthoreovirus (reovirus) is commonly used as a model system for understanding host-virus interactions. In this study, we identify that the proteasome system, which is critical for cellular protein turnover, affects reovirus entry. Inhibition of the proteasome using a chemical inhibitor blocks reovirus uncoating. Blocking these events reduces subsequent replication of the virus. This work identifies that additional host factors control reovirus entry.


Assuntos
Complexo de Endopeptidases do Proteassoma , Reoviridae , Internalização do Vírus , Animais , Mamíferos , Reoviridae/fisiologia
2.
J Virol ; 96(9): e0051522, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35416720

RESUMO

Viral antagonism of innate immune pathways is a common mechanism by which viruses evade immune surveillance. Infection of host cells with reovirus leads to the blockade of NF-κB, a key transcriptional regulator of the hosts' innate immune response. One mechanism by which reovirus infection results in inhibition of NF-κB is through a diminishment in levels of upstream activators, IKKß and NEMO. Here, we demonstrate a second, distinct mechanism by which reovirus blocks NF-κB. We report that expression of a single viral protein, σ3, is sufficient to inhibit expression of NF-κB target genes. Further, σ3-mediated blockade of NF-κB occurs without changes to IκB kinase (IKK) levels or activity. Among NF-κB targets, the expression of type I interferon is significantly diminished by σ3 expression. Expression of NF-κB target genes varies following infection with closely related reovirus strains. Our genetic analysis identifies that these differences are controlled by polymorphisms in the amino acid sequence of σ3. This work identifies a new role for reovirus σ3 as a viral antagonist of NF-κB-dependent antiviral pathways. IMPORTANCE Host cells mount a response to curb virus replication in infected cells and prevent spread of virus to neighboring, as yet uninfected, cells. The NF-κB family of proteins is important for the cell to mediate this response. In this study, we show that a single protein, σ3, produced by mammalian reovirus, impairs the function of NF-κB. We demonstrate that by blocking NF-κB, σ3 diminishes the hosts' response to infection to promote viral replication. This work identifies a second, previously unknown, mechanism by which reovirus blocks this aspect of the host cell response.


Assuntos
Orthoreovirus , Infecções por Reoviridae , Reoviridae , Animais , Antivirais , Mamíferos , NF-kappa B/metabolismo , Orthoreovirus/metabolismo , Reoviridae/fisiologia , Infecções por Reoviridae/metabolismo , Transdução de Sinais
3.
J Virol ; 94(10)2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32161168

RESUMO

Viruses commonly antagonize innate immune pathways that are primarily driven by nuclear factor kappa B (NF-κB), interferon regulatory factor (IRF), and the signal transducer and activator of transcription proteins (STAT) family of transcription factors. Such a strategy allows viruses to evade immune surveillance and maximize their replication. Using an unbiased transcriptome sequencing (RNA-seq)-based approach to measure gene expression induced by transfected viral genomic RNA (vgRNA) and reovirus infection, we discovered that mammalian reovirus inhibits host cell innate immune signaling. We found that, while vgRNA and reovirus infection both induce a similar IRF-dependent gene expression program, gene expression driven by the NF-κB family of transcription factors is lower in infected cells. Potent agonists of NF-κB such as tumor necrosis factor alpha (TNF-α) and vgRNA failed to induce NF-κB-dependent gene expression in infected cells. We demonstrate that NF-κB signaling is blocked due to loss of critical members of the inhibitor of kappa B kinase (IKK) complex, NF-κB essential modifier (NEMO), and IKKß. The loss of the IKK complex components prevents nuclear translocation and phosphorylation of NF-κB, thereby preventing gene expression. Our study demonstrates that reovirus infection selectively blocks NF-κB, likely to counteract its antiviral effects and promote efficient viral replication.IMPORTANCE Host cells mount a response to curb virus replication in infected cells and prevent spread of virus to neighboring, as yet uninfected, cells. The NF-κB family of proteins is important for the cell to mediate this response. In this study, we show that in cells infected with mammalian reovirus, NF-κB is inactive. Further, we demonstrate that NF-κB is rendered inactive because virus infection results in reduced levels of upstream intermediaries (called IKKs) that are needed for NF-κB function. Based on previous evidence that active NF-κB limits reovirus infection, we conclude that inactivating NF-κB is a viral strategy to produce a cellular environment that is favorable for virus replication.


Assuntos
Quinase I-kappa B/metabolismo , NF-kappa B/metabolismo , Infecções por Reoviridae/metabolismo , Reoviridae/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Linhagem Celular , Regulação da Expressão Gênica , Quinase I-kappa B/genética , Quinase I-kappa B/farmacologia , Camundongos , Camundongos Knockout , NF-kappa B/genética , Reoviridae/genética , Reoviridae/fisiologia , Transcriptoma , Fator de Necrose Tumoral alfa/metabolismo
4.
Ultrasound Med Biol ; 29(8): 1211-22, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12946524

RESUMO

Acoustic cavitation has been shown to load drugs, proteins and DNA into viable cells as a complex function of acoustic and nonacoustic parameters. To better understand and quantify this functionality, DU145 prostate cancer cell suspensions at different cell concentrations (2.5 x 10(5) to 4.0 x 10(7) cells/mL) were exposed to 500 kHz ultrasound (US) over a range of acoustic energy exposures (2 to 817 J/cm(2); peak negative pressures of 0.64 to 2.96 MPa; exposure times of 120 to 2000 ms) in the presence of different initial concentrations of Optison contrast agent bubbles (3.6 x 10(4) to 9.3 x 10(7) bubbles/mL). As determined by flow cytometry, molecular uptake of calcein and cell viability both increased with increasing cell density; viability decreased and uptake was unaffected by increasing initial contrast agent concentration. When normalized relative to the initial contrast agent concentration (e.g., cells killed per bubble), bioeffects increased with increasing cell density and decreased with increasing bubble concentration. These varying effects of contrast agent concentration and cell density were unified through an overall correlation with cell-to-bubble ratio. Additional analysis led to estimation of "blast radii" over which bubbles killed or permeabilized cells; these radii were as much as 3 to 90 times the bubble radius. Combined, these results suggest that extensive molecular uptake into cells at high viability occurs for low-energy exposure US applied at a high cell-to-bubble ratio.


Assuntos
Albuminas/administração & dosagem , Meios de Contraste/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Fluorocarbonos/administração & dosagem , Neoplasias da Próstata/metabolismo , Sonicação , Acústica , Contagem de Células , Sobrevivência Celular , Humanos , Masculino , Neoplasias da Próstata/patologia , Células Tumorais Cultivadas
5.
J Pharm Sci ; 91(7): 1693-701, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12115831

RESUMO

Ultrasound has been shown to deliver small compounds, macromolecules, and DNA into cells, which suggests potential applications in drug and gene delivery. However, the effect of molecular size on intracellular uptake has not been quantified. This study measured the effect of molecule size (calcein, 623 Da; bovine serum albumin, 66 kDa; and two dextrans, 42 and 464 kDa) on molecular uptake and cell viability in DU145 prostate cancer cells exposed to 500 kHz ultrasound. Molecular uptake in viable cells was shown to be very similar for small molecules and macromolecules and found to correlate with acoustic energy exposure. Molecular uptake was seen to be heterogeneous among viable cells exposed to the same ultrasound conditions; this heterogeneity also correlated with acoustic energy exposure. In a fraction of these cells, molecular uptake reached thermodynamic equilibrium with the extracellular solution for the small molecule and all three macromolecules. The results demonstrate that ultrasound provides a means to load viable cells with large numbers of macromolecules, which may be of use for laboratory and possible clinical drug delivery applications.


Assuntos
Ultrassom , Acústica , Animais , Bovinos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Dextranos/farmacocinética , Humanos , Substâncias Macromoleculares , Tamanho da Partícula , Soroalbumina Bovina/farmacocinética , Termodinâmica , Células Tumorais Cultivadas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...